CLOSED EQUATIONS FOR THE MOTION OF A LIQUID
CONTAINING BUBBLES (SURVEY)

R. M. Garipov UDC 532,529

Papers concerned with the equations of motion of multiphase media can be divided conditionally into
two categories depending on the approach used: phenomenological or kinetic. In the present paper we adopt
the second approach [1]; we obtain closed (i.e., not containing empirical constants and functions) equations,
in the simplest case, for the motion of a mixture of a liquid with bubbles of a gas or a vapor: 1) the liquid
is nonviscous and incompressible; 2) the velocity field of the liquid exterior to the bubbles is irrotational;
3) the bubbles have a spherical shape and the pressure in a bubble is a given function of its radius; 4) the
volume concentration of bubbles and the mean distance between neighboring bubbles is small, These equa-
tions can be a basis of phenomenological theories, which take into account the properties of real mixtures
more completely.

We discuss in detail known closed models of bubble~containing media {2-8]. We prove convergence
for the method of successive approximations for the calculation of the liquid velocity potential exterior to
the bubbles. The equations of motion for a system of spherical particles, obtained in [9-11], are general-
ized to the case of pulsating bubbles. In the framework of the resulting hydrodynamic equations we calcu-
late the rate of propagation of small perturbations. We solve the one-dimensional problem concerning the
decomposition of an initial discontinuity in which, on one side of the discontinuity surface, there is a pure
liquid with a constant pressure.

The phenomenological approach was developed in [12-14]; these references also contain an appro-
priate bibliography.

1. Consideration of Known Models

The equations for the motion of a suspension of bubbles of a gas or a vapor in a liquid can be divided
into two categories: 1) phenomenological equations containing, in addition to the characteristics of the pure
phases, the constants or functions for the mixture, which must be determined experimentally; 2) closed
equations, which employ only the characteristics of the mixture components taken individually. We shall
consider equations of the second type. These equations are valid when the volume concentration of the gas-
eous phase of the mixture is small. In order for the mixture to be regarded as a continuous medium the
mean distance ! between neighboring bubbles must be small in comparison with a characteristic flow di~
mension M,

Let uy(x, t) and py(x, t) denote the velocity and pressure of the liquid at the midpoint between bubbles;
at other points we define these functions by some method of interpolation. Derivation of the equations of
motion is based on two assumptions, First of all, we assume that u; and p, are regular functions of the
spatial point x = (x!, x?, x°) and of the time t, We assume the function &, t) to be regular if

VDL oD /at)l/vL|D|
where v is the mean speed of the bubbles and
V = (3/0dz', 8/02% 8/dz%

This assumption is valid for small volume concentrations of the bubbles. Secondly, we assume the
individual trajectory of the center of each bubble, namely x;(t), to be a regular function of the time t. In
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other words, the speed of a bubble is a regular function of its coordinates: v;(t) = v(x;, t). At points x =X;
we define the function v(x, t) by interpolation. This property is required to take into account the appearance
of compressibility of the bubbles, Bubble interaction through pulsations has the character of a long-range
action; we can therefore neglect collisions of a given bubble with neighboring bubbles, as a result of which
the trajectory of the given bubble undergoes a break, and take into account only the smooth collective ac-
tions of the distant bubbles. This property does not hold for a suspension of incompressible particles in a
liquid, wherein the particle interaction is of a short-range nature.

We describe exactly a class of flows for which we obtain the equations of motion, We indicate a typi-
cal representative of this class;

The Borzhom Problem. In an unbounded ideal and incompressible liquid let there be N cavitational
bubbles of spherical shape and of the same radius r. These bubbles are uniformly distributed in a ball of
diameter M, the distance between bubbles is I, and the volume concentration of the bubbles is ¢. The pres-
sure pT is the same in all the bubbles and is constant in time, The pressure is equal to zero at infinity,

At the initial time instant the liquid velocity field is equal to zero. This is approximately the situation (for
p* > 0) when a Borzhom bottle is opened. We assume that as they move the bubbles retain their spherical
shape, the volume concentration of the bubbles ¢ «< 1, and I « M. We wish to describe this motion in afirst
approximation with respect to ¢ and with respect to I, Of interest is the limiting case I = 0 for ¢ > 0,

When ¢ = 0, we have quiescence; therefore the presence of the bubbles is the principal effect in this
problem and manifests itself in a first approximation with respect to ¢, The formulated Borzhom problem
can serve as a special test problem for verifying various models of bubble-containing media.

We make the following assumptions with reference to the two-phase flows considered,

1) The liquid is nonviscous, incompressible, with density equal to one; it is unbounded, and the ex-
ternal force fields have the potential U.

2) The liquid motion is irrotational and the speed and pressure of the liquid at infinity are equal to
zero,

3) The bubbles have a spherical shape. The pressure in a bubble is a given function p*(r) of its ra-
dius andis the same for all the bubbles. The special case p* = const is admissible, The density
of the gas in a bubble is taken equal to zero since it is many times less than the density of a liquid
drop,

4) The mean radius r of the bubbles and the mean distance ! between neighboring bubbles satisfy the
inequalities )

r<Llg M

where M is a characteristic dimension of the average flow,
We note that all the assumptions are satisfied in the Borzhom problem.

The absence of rigid boundaries in 1) is essential. In the condition 3) p* is the pressure on the out-
side of the bubble wall; this pressure differs from the pressure inside the bubble by the presence of sur-
face tension. By virtue of the conditions 2) and 3) the velocity field of the liquid is determined uniquely by
the coordinates xj of the centers and the radii r; of the bubbles and also by their rates of change

dx; dr,

Ve-‘—m’*» Si:d; i=1,....N)

Consequently, the motion of the system consisting of the liquid and the bubbles is determined by a finite
number (8N) of scalar parameters., Therefore the evolution of the system in time is described by a Lagrange
system of ordinary differential, equations of order 8N,

Assumption 4) concerning the low gas concentration makes it possible to write this system of equa-
tions in explicit form. It is evident from this assumption that the force of interaction of two bubbles de-
creases as d”k, k= 2, as the distance d between the bubbles increases, For k =< 3 it is customary in the
kinetic theory of gases to refer to the particle interaction forces as long-range forces. Long-range ac-
tion between the gas bubbles in a liquid arises thanks to pulsation of the bubbles. This circumstance makes
it possible to let N — « in the system of Lagrange equations and to obtain the hydrodynamic equations (Sec-
tion 4). In Section 6 we solve a one-dimensional version of the Borzhom problem,
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This method of describing the motion of bubble-containing media and, correspondingly, the new equa-
tions of motion was proposed by the author in [1]. It is appropriate to compare these equations with the
equations of other authors, The latter are considered in connection with flows satisfying the conditions
1)-4). We recall that phenomenological equations of motion of bubble~containing media, which involve em-
pirical constants or functions, are not considered here.

Quasistatic Model {2, 3], In this model the velocity and pressure fields, u(x, t) and p(x, t), are as-
sumed to be regular outside the bubbles:

W ossu, - v (L.1)
P =py=p*(r) (1.2)

Let N be the number of bubbles per unit mass of the mixture. Then the density of the mixture is
Y = (1 = ¥ gmr)! (1.3)

Thanks to the assumption (1.1) the continuity equation and the momentum equation coincide with the
equations for a gas. Equations (1.2) and (1.3) yield the equation of state

p = p* (K>~ — 1 ()~ a.4)

The quantity N plays the role of entropy since it is conserved along the trajectories of the bubbles
(of the liquid particles).

S. V. Iordanskii's Equations [4]. We consider in detail the method proposed in [4]. Let uand p be
the velocity and pressure in the liquid, functions which are defined outside of the bubbles. We define the
pressure inside the bubble 2; to be equal to p*(ri). We define the function p to be equal to 1 and 0 in the
liquid and in the bubbles, respectively. The functions p, u, and p are nonregular (they exhibit strong vari-
ation at distances of the order [I); therefore their averaged values are of interest for experimental mea-
surements., We define the averaging operation by

CF(xont)y = L8 \F(x. ) dx
>

where V is a cube with center at the point X, and with edge L, I «<« L «< M, We apply the averaging operation
to the equation of motion of a nonviscous incompressible liquid. Since the operations of averaging and dif-
ferentiation are commutative, we obtain

39 3 (1.5)
57 <Ou> b = (A + (P bag) =0 (2 =1,2,3)
agxr

where 6, 3 is the Kronecker symbol and repeated indices denote summation from 1 to 3,

We define regular functions ¢, wg, py, v, T, and s, in terms of which we shall describe the averaged
motion of the mixture and for which we need to obtain a closed system of equations. We express (o), (pu®},
(puo‘uf”), {p) in terms of these functions. To do this we assume the following flow structure in the averag-
ing region Ve

1) all the vy, ri, and si are identical in V and are equal, respectively, to
Vi{t)=v(x, 8, () =r{x, t), s =s(x,
the number of bubbles in V is given by
nl? = ¢ (x4, t) (Y5 n )23

where X, is the center of the cube V; x; is the center of some bubble in V;

2) we surround each bubble in V by a sphere S of maximum radius R, so that R ~ /2. Outside of
these spheres and within the confines of V we consider the velocity and pressure in the liquid to be constant
and equal to
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L U, (1) = uq (Xo, £), Py (&) = po (%o, 1)

3) in the interior of each region Q between the sphere S and the
bubble surface we consider the velocity and pressure fields to be the
O same as those for the motion of an isolated bubble in the unbounded liq-
O 2, uid with speed u,(t) and pressure py(t) at infinity.

,,///////224 We obtain
: 7 py=1—c¢
T (pu>=uo(l—n‘/3:tR3)+n§udx =1 —c)uy+ SV(pdx (1.6)
a
Fig. 1 The velocity field of the liquid during the motion of an isolated

bubble has the potential u —uy = V¢, which we determine explicitly in
Section 2, The integralover Q inthis equation is equal to zero; therefore

‘n{d) = (nd) (1.7)

If instead of Q we take the region T (the shaded region in Fig, 1, in which the averaging region is in-
dicated), the integral in Eq. (1,6) is then not equal to zero and we obtain

{puy = {piu, + kew (1.8)

where k is some number and w = v — u,.

Similarly we obtain

<PusUy = (pd ug®ueP 4 ¢ (5% 4 Yoo |w[7) Bag + a0 0P) + O (c*)

P> =po+cCl(R]r)—1)r7d(r*s) [ dt 4-p" (1) — po — °/:8* — /o | W[} + O (c*y) -9
From assumption 3) we obtain equations describing the motion of an individual bubble:
i %) = 27+ (00 V) o) — (W - ) 1.10)
rdsjdt + 3s* =, |W[* + p* (1) — po (1.11)
dridt =s  (dJdt = /ot + v.V) (1.12)
where the dot indicates the scalar product of the vectors and |w| denotes the length of the vector w.
The conservation equation for the number of bubbles has the form
on /ot + 8 (nP)/0z® =0 (1.13)
where n is the number of bubbles per unit volume of the mixture:
n =3 3% (1.14)

The equations (1.5)-(1.7) and (1.9)-(1,14) form a closed system. The quantity R, whose exact value
cannot be determined theoretically in the scheme set forth here, enters the equation in the lowest degreee
with respect to r and c:

(RIr?*=(1/rP= Kc™»
where the constant K can only be determined experimentally. In [5] it was assumed that
{p>= Py (1.15)

This is inadmissible if the accepted accuracy is to be maintained.

B. S. Kogarko's Model [5]. We obtain the equations given in [5] if in the system of equations given in
{4] we put v = u,, discard the equation (1.10) contradictory to this assumption, and adopt, instead of the rela:
tion (1.9), the assumptions (1.15) and
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puruly = (p uSub (1.16)

The equations given in [5] have the usual gasdynamic form but use, instead of an equation of state,
an equation for the radial pulsation of a bubble, We write the pulsation equation, taking into account the
viscosity of the liquid:

der ] drie

d
reg g ) T g =P — o (1.17)

where v is the coefficient of kinematic viscosity of the liquid.

Analogous equations appeared later on in [6-8] and were generalized to include viscosity and thermal
conductivity of the liquid.

In the models indicated above yet additional assumptions were used besides the assumptions 1)-4),
We shall use here only the assumptions 1)-4), In this there is a basic difference between our method and
those indicated above. The equations given in [4, 5] and the equations we give in Section 5 coincide in the
case of small oscillations in the neighborhood of quiescence. Is it possible to obtain in the limit for [ — 0
and ¢ > 0 (for example, in the stopper problem) a quasistatic model? This cannot be the case since v %-uo.
The equations given in [5] yield a quasistatic model in the limit, The equations given in {4] do not go over
in the limit to the quasistatic equations; however, they do not even coincide with the limiting equations given
in this paper. The reason for this is that, instead of the relation (1.7), it is necessary to take the more
general equation (1.8). The value of the constant k in equation (1,8) cannot be calculated by the method
given in [4]. In Section 2 we find k by calculation to be equal to 1/2.

2, Calculation of the Velocity Potential of the Liquid

The velocity potential ¢ (X, t) is a harmonic function in the liquid interior Q, and it satisfies on the
bubble surfaces I'j the flow-over condition; thus

Ag=0inQ, ¢/« =20

og/on=s; +~vinonT; (i=1,...,N) (2.1)
where the vector n is normal to I'; and is directed towards the liquid interior,
We seek the velocity potential in the form of a sum
N
¢ = 2 ¢ G =00y

i=1

D = —srf |z — & (2.2)
D,
Ad; .0 outside I';, Dl =0, —%-‘- =w; on I}

The potential can be represented by the sum (2,2), To prove this it is sufficient to establish the solv-
ability of the system of integral equations for the N unknown functions w; (w; is defined on T})

wi+2

J#i

0.
z — %
an Fi-\i-ll—z

J#i

oo
on

I

r=h (2.3)

1

THEOREM 2.1, Let R; >0, 0 < Gy <1, Let us assume that
ri>Ry (i=1,...,N)
r << Cxi—x] (G, j=1,...,N)
all the bubbles being located in the interior of some ball of diameter M.
Then there exists a number C, independent of R; and Cg, such that for
Clln (MCo! Rp) < C

the system of integral equations (2.3) has a continuous solution; moreover, this solution is unique for ar-
bitrary s; and vj. This solution can be obtained by the method of successive approximations and satisfies
the inequality
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N, } (€ — CP In (MCy | R))™? mz;x (BA! (2.4)
where

Jwp =r2 {wpds

¥

Proof, Let Cy <Y, Since D) ¢;is a harmonic function inside Tj, then, if we integrate the i~th equa-
" i
tion in (2.3) over I'j, we obtain

{was = fas =0 (2.5)
Ty

Iy

Subject to this condition, there follows from the Poisson formula for the solution of the Neumann prob-
lem outside the ball the existence of a number C; < « such that the inequalities
1D <Crd 12 | x —x |72 [ wy |l
VD, | << Crd [ x —x; | =% |l wi || for [x —x;|>2r (2.6)
are satisfied,

We seek a solution of the system (2.3) in the class of functions with the finite norm

Nwll = max || w; ||

From the relations (2,5) and (2.6) we obtain

. | -
maxlz-;)n—’ §8612 r)»3|X,~-X,~| 3w
Ty i il

i

Therefore the norm of the integral operator in the system of equations (2.3) does not exceed

C: = 8C, max D) rf[x; — x;] (2.7
L E
We find an upper bound for the sum (2.7) for all possible distributions of the bubbles satisfying all the
hypotheses of the theorem. The meaning of the second assumption is that if we increase the bubble radii
Co‘i-fold, then the bubbles must intersect. Therefore the sum (2,7) will be its largest for a dense packing
of balls of radius Co'ir-. This sum then does not exceed the upper Darboux sum for the integral over the
region r;C, 1< |x —xj = M:

3/4n"‘(,‘03S | x — %7 dx < 3C2 In (MCo / Ry)
When C03 In (MCy/Ry) is sufficiently small, the norm of the integral operator (2.3) becomes less than
one, The theorem then follows from this,

This completes the proof of the theorem,

The volume concentration of the bubbles ¢ < C,, so that C, is an upper bound for allowable concen-
trations, The largest allowable values of ¢ decrease slowly as M/R, — «; therefore we can apply the ex-
pansion (2.2) even to the case M/R, = =,

Let {Pm,a(x)} be a system of homogeneous harmonic polynomials orthonormal on the sphere |x| =1,
let m be the degree of a polynomial, and let 1 = < 2m +1, We expand the function wj in a Fourier series:

o< 2m+l
w; = Y D) WP o (D) (2.8)
m=) x=1

Here, by virtue of the relations (2.5); the zeroth harmonic is absent., We write Parseval's equality
2m-f-1

Lk = 3 o, Jomp= 3 e (2.9)
2

m—1
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We readily find that

x

O, = ) O

ma=1
m e TS e o (2.10)
(I)i (xy t) — T /(m + l) Z w; Pm,z (x p— xi)lx — \; 2m-1
a=1

Let us estimate w;M,,

For this we multiply the i-th of the equations (2.3) by Pk,oz(n) and integrate over I'y. By definition
we have

w:""x —_ ri-2 ‘\ ?Ifipk,a (n) d.S
T':

Let us transform the integral
A =i § ad;™ | on Py o (n)dS

i

We expand the harmonic function <I>jm in a Taylor series in the ball |x —x{|< Ry< lxj - Xil:

O (x, 1) = 2 2 ——V"GJ (Xis 1) (x — x;)8 (2.11)

—OIBI——k

where 8 = (B4, By, B3) is a vector index for which

[B 1=+ Ba+ By B! = Bu!Ba!Bs,
VB = (3 / 0z (d | 9z%)P (D ] 3x%)

the degree of the vector (x -xi)ﬁ is defined analogously. The inner summation in the series (2,11) is a
homogeneous harmonic polynomial P of degree k in the argument X —X;. In accord with Euler's identity
for homogeneous functions we have

aP ~ 6Pk _
=t ) = b o T

From this, taking into account the fact that two homogeneous harmonic polynomials of differing de-
grees are orthogonal on the sphere, we obtain

. 1
Abr=krft D) VD (x, 1) ¥ Py (v) dy (2.12)
Iyl=1{31=k

According to Parseval's equality we have
| Afim | = Brf™ | VED;™ (x,, 1) |

AATOTE | 3 4 2 VPO (x) ,’ dy (2.13)

IY|='1 Ipl"l

We square both sides of the equation (2,11) and integrate over the sphere | X —xil = Rj. By virtue
of the orthogonality of the terms of the series (2.11), we have

R VR (x;, 1) P D;" [*dS
i f] P << IX—X§I=R,v| f] (2.14)

Since éjm is a homogeneous function of x ~X; of degree —m—1, it follows that

m+2

(D75, ) [ < [x—x;fm |/ 2l T ypm (2.15)

41 m -1
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For the proof of this inequality we need to estimate ‘I>jm in terms of the integral of its square over
the sphere |x —le =1, which may be expressed in terms of | wjml by virtue of the relation (2.10).

From the inequalities (2.14) and (2.15) it follows that

| V0™ (0 ] <V oo™ | (5 (m + 1) ™
0B |%5—x:|/2, k>0, -m>0 2.16)

In accordance with the relations (2.9) and (2.13)-(2.16) we have

DA | <V Ty ki rpR7 wgl, B> 25 2.17)

m=1

Putting Rj = |Xj —xil /2 here, we obtain the desired estimates
Iwik|< | ;‘ik | + V§7; n;ax ﬂwi"k(gr/l)k+2 SA'+~2 (k = 1; i= 1, oo ,N) (2.18)
where r is the mean radius of the bubbles, ! is the mean distance between neighboring bubbles, and

Sm = max 2(1/|x,~—x,»|)"‘
b

The quantities || w;|| satisfy the inequalities (2.4). We estimate the sums Sy, by means of an integral.
Since there are on the average I bubbles in a unit volume, we have

S~ (MIIP™(m =1, 2), Sg~ln (M /1), Sy ~1 (m>4) (2.19)
Using the relations (2,13) and (2.16) for m = 0, w;°s° = \/47rsi, we obtain

¥ <V Ex73]vi| 8y +V'3'n/2n;,ax 851k (2r ] 1)+ Siyy

1£:1 < V'3n 73| vi] 4 const max s rti*M (2.20)
where the const < « if 2r/l < 1; 651 =1, & =0 fori = k. |
We write out the equation for d}etermining wii’o‘ :
we =V 3TEM wh® = 0@ — 0¢;’ (xi, ) | 82> ((pg' = quaj;' a=1,2,3i=1,... 1\) 2.21)
From this and from the relations (2.16) and (2.18), we have
wi=vi—=V (@7 + ) Iy, + O (sc + ves) (2.22)

where s and v are typical values of s; and | vj, respectively; <I>im' is the sum of <I>]-m with respect to the
index j = i.

We calculate the limit of ¢ as I —0 (¢ >0, s/T = =), It is necessary to determine the class of al-
lowable distributions of bubbles for which the limit of ¢ exists and does not depend on a specific distribu-
tion from this class, We point out two extreme examples of such classes: 1) arbitrary distributions; in
this case no limit exists which is the same for all distributions; 2) a uniform distribution, wherein the bub-
bles are at the same distance from each other. This class does not contain distributions of bubbles in real
flows in which the distance between bubbles varies as flow motion takes place.

We assign a class of allowable distributions by means of the regular functions r'(x, t) > 0, s'(x, t),
w(X, t), c(X, t), defined in a domain G with bubbles:

Q) ri=rg’ (X, &), sp =71 (x5, 8), Wy =W, ) {i=1,...,N)

(2) We decompose domain G into cubes g with the same volume L3, L = r,%, 2/3 < a <1, The number of
bubbles in the cube g is

cx, )/ an /37 (x, ) (L/rp)®, x=g
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Within the confines of g these bubbles can be distributed arbitrarily; in particular, they may all be
grouped in one place,

THEOREM 2.2. Subject to the conditions (1) and (2), we have
max | ¢ (x, £) — @ (x, &) | < const r 2 ¥, < a<<1 (2.23)
x=0 .

where the const depends only on the maxima of the functions r', s', w, and ¢, on the maxima of their first
derivatives with respect to x, and on the minimum of r' in G; in addition,
s (v, 8)

3 ¢ /. -
b (x,t) = G éc (v.t) \.— TN - ew (v, D) V) [x—yli™tdy (2.24)

Y
Proof, Let ®™ = ) ®,™. We show that &° + ®! converges to the integral (2,24) and that ™ — 0 for
i=t

ry — 0 when m= 2,

To estimate the difference between the integral (2.24) and & + &' we decompose the domain G con-
taining the bubbles into cubes g of volume L3, as stated in the condition (2), so that the point x will be the

center of some cube g,. The values of the integral over g = g, and of the sum 2 (P~ DYy are found in a
X, =g

common interval; consequently, the difference of these values does not exceed the length of this interval

const L°L max Ix—y | ?-lx—yl™® (2.25)
Further
’S (& const L
&o
Since
| D" < const ryinQ (2.26)
it follows that
| 3 @2+ O | < eonst (Lo rg
XE8
From this, summing the expression (2.25) over all g = g,, we find that
f D — @° — D Lconst (Lln (M /L) L - L3 (2.27)

We estimate ™, m = 2:

|
! o4 S D o L const (L3ry™ 4- max w™ |y )
i

X80 3 & X;&d
R (In L7 ome=2
J o= P 2 max | X — ¥ |1 < const |
ggo YE§ l L-me2 m > 2

Since the parameter rj does not enter into the estimate (2,18) for | w;™!, then, substituting here and
in the expression (2.27) L =g, 2/3 < a <1, we obtain the inequality (2.23).

This completes the proof of the theorem.

The velocity V¢ does not converge for I — 0 (i,e., Ty — 0) uniformly with respect to X ¢ Q. We can
show merely that it is bounded, Therefore we restrict further the class of distributions of bubbles to be
considered. We assume that

(3) for almost all bubbles
Ve,  (x, ) > VD (x, 5) for I >0, xe& Q;

where Qj is a ball of radius rj with center x;j.
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THEOREM 2.3, Subject to the conditions (1)-(3) the equation

§(@ =)o /ot + (VO 4 Hsow) V) dxdt = 0 (2.28)

is valid for an arbitrary smooth finite — i.e., equal to zero outside of some ball and beyond a finite time in-
terval — function ¥(x, t).

Proof, We have the identity

_SJS (a\r/at-—(pAtp)dx——S @/ on dS)dt = 0 (2.29)

Q 1
where T is the surface of all the bubbles.

We let ry— 0.
From inequality (2.23) it follows that

}) (@9 /0t — @A) dx — \ (04 1 0t — D3 (4 —¢)dx (2.30)

We transform

Vogras = J(Tevy i gapde +§ (= on —erwon 3 o) Shas

i Q.

i m=2

Expanding ¥ by Taylor's formula in a neighborhood of the point X; and taking into account the orthog-
onality properties of the spherical functions, we obtain

© g . 4T
> ¢ SGbdS = S (VO VY + g Ap) dx — == rdw Vg (x,0) - O (r) (2.31)
i QG
Next, by virtue of the relations (2.26) and (2.23), we have
@ (X, ) > D (x, 1) for ro— 0, x &= Q,

From this and from the relations (2.23), (3), and (2.31) it follows that

\ 0 dS — (V0 — ow) T - DAy cdx (2.32)

on
-

Integrating the relations (2.30) and (2.32) with respect to the time t, we obtain, in accord with the
equation (2.29), the equation (2.28),

This completes the proof of the theorem,

From the identity (2.28) we obtain the following expression for the mass flow of the mixture:

COoF>—><p> VD + Y, cw for 10 (2.33)

3. Equations of Motion for the System of Bubbles

Since the state of the motion of a liquid with bubbles of spherical shape is uniquely determined by the
values of the 8N numerical parameters Xj, v, i, s; (i=1,..., N), its evolution in time is described by a
system of ordinary differential equations of Lagrange (see [9]). In order to write out this system in ex-
plicit form for a large number of bubbles we need an additional assumption concerning the smallness of
their volume concentration, For the case in which the radii of all the bubbles are the same and are con-
stant in time (i.e., incompressible globules of the same radius are considered), this was done in [10, 11].

The assumption concerning the spherical shape of the bubbles is satisfied approximately. In actuality,
the bubbles have a nonspherical shape, unknown beforehand, which it is necessary to determine in the
course of solving the problem. Therefore, strictly speaking, the state of motion of a liquid with bubbles
cannot be defined by a finite number of parameters, The following theorem is found to be applicable.
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THEOREM 3.1. The Lagrange equations of motion are a finite-dimensional Galerkin approximation
to the exact problem under which the energy-conservation law remains valid,

Proof, We first formulate the exact problem,

We assume that the pressure pj(i =1,..., N) inside the i-th bubble is constant throughout its volume
and is given, According to the Cauchy —Lagrange integral, this yields the boundary condition

6@/at+!/2|V(P|2+Pi'“”K+U=0 on T/(i=1,...,N) (3.1)

where % is a surface tension constant, K is the curvature of the surface I'j, and K(X) >0 x € T;) if I'; is
convex in a neighborhood of the point X. A kinematic condition for nonpermeability of the bubble walls
must also be satisfied, namely,

N
d¢ / on = v, r=y7r
¢/ on Un on {gl 1 (3.2)
where vy is the normal velocity of the bubble walls. The problem consists in determining the surface I'
and the velocity potential v(x, t), so that ¢(x, t) will be harmonic outside I" (in ), w{w = 0, and such that
the boundary conditions (3,1) and (3.2) will be satisfied.

For an arbitrary smooth time-dependent surface T' and for an arbitrary harmonic function ¢, ¢, =
9, defined outside of T', we have the identity

d d 1 » ¢/ dgp O 1 2\ g

—dTTzs—t—z—Slwp]-dx:—‘}(aqz |V Funds (3.3)
Q

where T is the kinetic energy of the liquid. I I and ¢ satisfy the boundary conditions (3.1) and (3.2), i.e,,

if they constitute a solution of the problem, we then obtain from the relation (3.3) the energy-conservation

law

M«

d
@l =

1=1

.LV. — )c-iS o\ Uv dS\\
b dt i at Vi 15 ! J (3.4)
i
where Sj and Vj are the surface area and volume of the i-th bubble, We have used here the equations

4y o Sv,,ds, %s;i KdS
r. .

1 k3

(3.5)

We restrict the class of surfaces I" and potentials ¢ considered. In doing this, it is necessary to
renounce the exact satisfaction of the boundary conditions; however, the energy-conservation law (3.4) will
not be violated.

We assume that the surface I is a given (fixed) function of a finite number of parameters q = (q,...,
qpp) (generalized coordinates) and does not depend on the time. Variation of I with time occurs only as the
result of a change in q. For fixed q the normal velocity of the surface T is a linear function of the general-
ized velocities qj'; thus

M
P o
Up == 2 X (X, q) qj, Xz L, 9, = "T{['J' (3.6)

r==1

If we assume the bubbles are spherical, then for the quantities quj-3, Q4j-9, Qqi-1, Q4i it is necessary
to take the coordinates of the center and the radius of the i-th bubble. In this case M = 4N and

(Xai-30 Kgiezr Aai-1s Xai) =, 1) on Ty, 0 on Ty (k£ 1)

We shall satisfy the flow condition (3,2) exactly, i.e., at each point of the surface I'. Then for the
velocity potential we have

M
a:"
GE = X P(x, g, Ap=0mnQ wle=0. %,,= % on I (3.7
j==1
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The boundary condition (3.1) cannot be satisfied at each point of the surface I'. We can satisfy it in
the mean in the following sense. We take M linearly independent functions x*(x, t),..., x\M*&X, t), X € T,
and we put

N

2§ (Op]ot + ;) VoP 4 pi — %K +-Uyx*dS =0 (j==1,... , M) (3.8)
s . :

i=1

We obtain M equations for determining M unknown functions of the time q(t). This is the essence of
the Galerkin method. Under weak restrictions on the functions y;* (the system of functions {xJ *} must be
complete), the system of equations (3.8) for M = « is equivalent to the boundary condition (3.1), For M< =
we have the finite-dimensional approximation of the problem, .

We select the system of functions {y;*}, starting from the fact that the energy-conservation law (3.4)
is not violated. The equation (3.8) is satisfied for an arbitrary linear combination of the functions x*,...,
xM*, i.e., for an arbitrary function x * from the linear set X with the basis {xt*, ey xm*} . For the energy-
conservation law (3.4), subject to the condition (3.2), to be valid, it is necessary and sufficient that the equa-
tion (3.8) be satisfied for an arbitrary normal velocity x* = 80/on from the class considered. For fixed q
the velocities 8¢/on form an M-dimensional linear set (3,7), which must coincide, consequently, with X,
i.e.,

=% G=1,...M (3.9)
We may confirm that the equations (3.7)-(3.9) are equivalent to the system of Lagrange equations

4 or  or
dt dg/ 04;

a ¢
—aq—J(\ oV, — %8, 4 é de)(j =1,..,M) (3.10)

M =

i=

-

In accordance with equations (3.5), we have

N

ZS(A—MH-U)V ds = Z

i=1

s/ \
gy \PVi — wSit 3 Udx, (3.11)

Q;

In [9] it was shown that, subject to the conditions (3.7), the identities

S(a‘ +1/2|V¢P|x7d5’ N LT (3.12)
T

are valid for an arbitrary function q(t).
The Lagrange equations (3.10) follow from the relations (3.11) and (3.12).
This completes the proof of the theorem.

Since it has been established that the Lagrange equations for the motion of N spherical bubbles are a
finite-dimensional (4N-dimensional) approximation to the exact problem, various modifications of these
equatijons are then possible for a given dimensionality of approximation 4N, The Lagrange approximation
is inconvenient in the sense that the velocity potential must be calculated as a solution of the Neumann prob-
lem (3.7); this cannot always be done explicitly, Therefore in the sum (3.7) the harmonie functions ¥j(x, q)
may be assigned a priori, and new variables g;* can be introduced in place of the coefficients qj'. Then the
flow condition (3.2) can be satisfied in the mean; this yields equations for determining qj* in terms of qj'.

We consider next the Lagrange equations (3.10) for bubbles of spherical shape. We choose as the
generalized coordinates the coordinates of the centers and the radii of the bubbles. We find an approximate
expression for the kinetic enefgy, assuming that the volume concentration of the bubbles ¢ « 1 and that s =
O(r).

We put

¢ =0 @, ®; = 2 Qo™

m-—0
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Taking into account the fact that ¢i' is a harmonic function inside T'j, we obtain

De/,

U S {( 9 T alpl
— P s S (g + e+ o) i + 17 (3.13)
= I ) !

In the sum ¢; we discard the spherical harmonics &; m 4f order m=2. The error 8, which arises in
the integral over Fv is now transformed and estimated w1th the help of the inegualities (2,16) and (2.18):

181 D g A B o+ 1™ [ V79 (3 8] 1) = O () (3.14)

m=2

Since Vog;' = O(c) on Qj, then, making an error O(c3), we neglect the integrals over Qj in the equation
{3.13). Then

N

2T = 2 ’.2_1. rd(wi P — Wi V@ (i, 1) - dar 2 (res? — s (X, l)))+ 0(c (3.15)

i=] 5

In accordance with the relation (2.14), we make the substitution w; = vj ~ V¢i'(Xj, t), We obtain an
expression for the kinetic energy

N

27 = B (Z5 rd (vl — %avi Vo' (@, 0)] + 4ri (s — s (1)) + O(c) (3.16)

i=3
By virtue of the relations (2.22), (2.16), and (2.18) we can put
@ (X )= D (— s 4 ey V) | x — x| (3.17)
jomi .
into the equation (3.16) without decreasing its acecuracy.
Then
8T 1 dvy = @na/3)yr3 (v; — 3Vg;' (x4, &)
AT ! 8s; = 4ar? (ris; — @i (xi, 1)
oT / 0x; = —=2a%(rdv-Vo. (xi &) + 2r s, (x;, 1)) (3.18)
T [ dr; = dard (Mg | vi 12 —=3v Vo (xy, 1) + 382 — (25, / ridgs’ (x5 t))
We calculate the right sides of the equations (3.10)

(0 7aryy (piVi— xSy = dnr? (p; — 2x /1) == 4rr2p* (1) (3.19)

The derivatives with respect to all the x; and the remaining Ty (j = 1) are equal to zero. For small
bubble radii

| Udx = 2oV (x, 0, - | Udx s dartl (v, ) (3.20)

i
Q Q;

_a"
(if AU = 0, these equations are then true for arbitrary r;), the derivatives with respect to x;, Ty (j=1) are
equal to zero.

Substituting the expressions (3.18)~(3.20) into the equations (3,10), we obtain the desired system of
equations for the motion of the N bubbles:

(i.‘(l fdt = Y
d\'i ! di (38,— /ri) (V, — V(Pz’ (\',', t)) - (3‘.6 _, (‘)t)(p;' (xi, l) = ZVU (l‘i, f)
ar ldt = s, (3.21)

dsi 3 P

. 3 ! PV 2 . g , .
ro— st = g 0 (K ) — v VO (X ) 8 =P pt(n) + U (3 ) i=1,...,N)
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4, Hydrodynamic Equations

In the expressions (3.17) for the ¢j'(x, t) we replace vj by wij. There is then no decrease in the ac~
curacy of the expression (for ¢ <« 1); we also make the assumptions (1)-(3) of Section 2. Then the limit
of 9;'(xj, t) as I — 0 coincides with ®(x;, t), as given by equation (2.24). In the equations (3.21) we replace
@i' by the value of & in a neighborhood of xj. For this it is necessary to assume that

(4) for almost all bubbles
';,—‘Pi'(xh 1) — Ti'm (x;, t),
%8_ @ (X, 8) —> %a—(b (xiyt) for 1 —0
According to equation (2.24) the function ® satisfies the differential equation
V(1 —3c/2)V®3,cv)=3es/r (4.1)
and the condition

Dje=0

From the equations (3.21) we obtain in the limit, making the assumptions (1)-(4), the results

dv ! dt + 3s(v — YD) /r —3V@D /8t + Y, | VD |2 = 2VU (4.2)
00 /0L - My |IVD |2+ Y| v VD |2 ppr () + U —r — (rds/ dt + 3,8 = 0 4.3)
dr Idt=s (dldt=0/dt+ v-¥) (4.4)

We have here denoted r' = r/ry, s' = s/ry by r and s, so that in these expressions r and s are not
small; ry << M is a typical bubble radius, We have also added in here several terms of order c¢? (in equa-
tion (4.2) we have added in the term ~¥,| v&|2, and in equation (4.3) the term ¥,|v&|?]. This does not dimin-
ish the accepted accuracy of the approximation, This is done so that the equations will be invariant relative
to a Galilean transformation (see below). The term of order ro2 is left only with the higher derivative since

only it is essential as ry — 0.

The equation for the conservation of the number of bubbles has the form
de/dt +¢cV-v=3c¢s/r 4.5)

Equations (4.1)-(4.5) constitute a closed system of hydrodynamic equations.
Eliminating s from the equations (4.1) and (4.5), we obtain
dc/ot—V (1 —3¢2) VD +Yyev)=0 4.6)
which is equivalent to the identity (2.28). By virtue of the relation (2.33) the equation (4.6) is the continuity
equation,

Putting Ty = 0 in equation (4.2), we obtain the limiting equations. The function p*(r) must either be
constant or depend on r'=1/1).

We study some general properties of the system of equations {(4.1)-(4.5).

Satisfaction of the Inequalities r >0, ¢ > 0, In accord with the physical meaning of the variables we
must have r = 0, ¢ = 0, ¢ = 1. From equation (4.5) it follows that if | s/r| < = and ¢ = 0 at some point X,
at time ty, then ¢ = 0 along the entire bubble trajectory (i.c., the curve d=/dt = v) passing through X,. Next,
climinating s from the equations (4.1) and (4.4), we obtain

dr/dt =rVeN/3¢c; N=(1—3c/2)VD + 3/ev

Thercfore, if |[V-N|/(3¢) < » and r = 0 at some point, it follows that r = 0 along the cntire bubble.
trajectory passing through this point. For smooth solutions, on which s/r and V.N/(3c) arc bounded, the
inequalities ¢ > 0 and r > 0 are satisfied for all t > 0 if their initial values are positive,
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The inequality ¢ < 1 is not guaranteed if v # V&, Bubbles are "allowed™ to be displaced relative to
the liquid; therefore they pile up, forming a cavity., The hydrodynamic equations are valid outside this
cavity.

Galilean Transformation and Dilatation, The equations (4.1) and (4.5) do not change their form when
the following change of variables is made:

x=alt+x,®=ax—"Y,|a-- b+ D, v=a++yv (4.7)

the remaining variables t, s, T, and ¢ do not change, where a and b are arbitrary constants. This change of
variables is referred to as a Galilean transformation; physically it corresponds to changing over to a sys-
tem of coordinates moving relative to the initial system with the constant velocity a.

When p'(r) = const the equations (4.1)-(4.5) are invariant relative to the group of dilatations
X =ax', {=at’, I -=ad, r  a (4.8)
the variables v, s, and ¢ do not change; a is an arbitrary constant,

Type of System. The system of equations (4.1)-(4.5) is quasilinear. The equation of its character-
istics 0(x, t) = 0 has the form (for ry > 0)

PG V02 ({1 - 3 = Gew V0 b e (w-T0)Y) = 0

o= a |- vV, w v — ¥ (4.9)

The quadratic trinomial in ¢ in the parcentheses has a negative discriminant if w » V0 = 0 and
0T o< ¥,y (4.10)

and, conscquently, is not equal to zero, Therefore, subject to the condition (4.10) and r > 0, we have the
recal characteristics

S dr - v -Y0 0 (mudtiplicity 2) 4.11)
AN UN T {multiplicity ) (4.12)

and two distinct complex characteristics for w » 0, which become real for w = 0 and merge with the char-
acteristic (4,11),

The system of cquations (4.1)-(4.5) is of mixed type. The manifold w = 0 is singular, We note that
w is the displacement velocity of the bubbles relative to the liquid.

We transform the limiting equations for ry = 0 in the one-dimensional case: we differentiate equa~
tion (4.3) with respect to x and climinate s with the aid of equation (4.1). The condition of hyperbolicity of
the resulting system has the form

AL < trdp () dr <P, (0) 4.13)

The function ;3y(c) is defined in Section 5.

5. Velocity of Propagation of Small Perturbations

Consider a constant flow in the absence of external forces (U = 0)

L T R ¢ N N N N -
(pr =N uy 1Y)
The more general casce in which v = vy reduces to the cquations (5.1) by means of the Galilean trans-

formation (4.7). We linearize the system of equations (4.1)-(4.5) in a necighborhood of the solution (5.1).
Let us put

(5.1)

:

B -ugex o s e iy (1)
ptr)y - pr )y —brf

We obtain (we omit the prime)



(A4 — ¥ )A® + Y0 v — 5 — Yuy- Vo= 0
—3V(0D / dt 1- uy-FP) 2 0v /3t — 3ues =0
oD /ot 4- 3y VO — Yyu,v —r2ds /ot —br =0 (5.2)
—s+r=0,Vv—3+0d/dt=0
(A =1/Q@c) --1)

We consider sinusoidal waves advancing along the x! axis

(9] &, /i
v vy
= Re ; i(kxt +l)
s £ gllhx!+ol (5.3)
r r
¢ €y

Substituting this expression into equations (5.2), we obtain a system of homogeneous linear algebraic
equations for &,..., ¢;. Inorder for nonzero solutions of the form (5.3) to exist, the determinant of this
system must vanish;

Qk, w) -0

Next, we consider two particular cases,

1. uol =0, i,e., the velocity of the perturbation wave is directed normal to the velocity of the main
flow (5.1). Calculations show that

Q = 0t (0?4 AR (rf0? —b— ), [ ug | ) = 0 (5.4)

From this we obtain the phase velocity of the perturbation wave
M=o/ k= (A 13 |? —rle): (5.5)

When u, = 0 this expression coincides with that given for the model in [5].

All the roots w of the equation (5.4) are real for arbitrary (real) k. Consequently, the flow (5.1) is
stable to such perturbations,

2, u02 = u03 =0, i.e., the perturbation wave propagation velocity is parallel to the velocity of the main
flow (5.1). Letu,! =u,. Calculations show that

Q = 0% (0' — (34 /2 4 3uZkle® -, ulhlo — (b — ro?) (A12e? - Juklo 4 %.ukY) (5.6)

This is a sixth-degree polynomial in w. It has a zero root of multiplicity two; the other four of its
roots are obtained by equating the second factor to zero; thus

(A2 —3ug? [ 2)2 — (b + 3u/2 — r2o?)(AAT & 3ugh -+ ) = 0 (5.7)

If the pair of numbers A and u, are roots of the equation (5.7), then = and —u, will also be roots,
Therefore it is sufficient to consider the case uy = 0,

A For u, = 0 the graph of the function X = A{w) is shown in Fig, 2.
A From this graph we can find the frequency w as a function of k. It is
evident from this figure that for arbitrary k there are four real roots

(two of them equal to zero).

Let uy > 0. From equation (5.7) we express w in terms of \. When
e 0 < ¢y < %, uy = 0, we have the inequality AX? + 3uyA +3uy?/2 >0 for all
/ 3 A. Therefore for such values of ¢, we have four distinct cases, depend-
ing on the parameter 8 = buy~2,

1, = >8= By(cy). For all k there are two real (and, consequently,
two complex-conjugate) roots w (Fig. 3).

Fig. 2
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2 [ryale, T 2. Bi(cg) > B = Bylcg) ® 3/ (1 + 3¢y} (for cy<< 1), If ky = |k| = k,, we
] i then have four real roots; if|k| & [ky, ko], we then have only two real roots
/ 1 T (Fig. 4).
- 3. Bylcy) > B = 0. For | k| = k, we have four real roots w, and for
; A | k| >k, we have only two real roots (Fig. 5).
7 7 7 7
N 4, 0>8= —%. This case is possible owing to surface tension
N : _________ forces in the bubbles. For |k|= k, we have four real rootsw, for k, <
\["J | k| = k; we have only two real roots, and for | k| > k; there are no real
roots (Fig. 6).
.2 . UV NN,
Fig. 7 For 8 < —¥, there are no real roots w,

Figures 3-6 display the graphs of A (w) for ¢4 = 0.1 and 8 =1, 0,75,
0.25, and —1, respectively.

Figure 7 shows the graph of w(k) for k = 0 for the values ¢, = 0.1 and g = 0.75, For k < 0, w{k) = ~w(—k). .

Thus, when ry> 0, the flow (5.1) is unstable relative to short-wave perturbations; when 8> Boley), it
is also unstable relative to long-wave perturbations. When r; = 0, the flow (5.1) is stable if -3/2 = 8= B4(c)
and unstable if 8> Byor 8 < -3/2. The hydrodynamic equations (4.1)-(4.5) were introduced under the as-
sumption that the wave length > r;,. It is therefore necessary to keep this restriction in mind when making
a statement concerning instability of the flow in the presence of short-wave perturbations.

6, One-Dimensional Borzhom Problem

We solve the Borzhom problem, formulated in Section 1, for the one-dimensional case in which the
bubble velocity is parallel to the x! = x axis and all quantities depend only on x and t. Assume that for x <
X({t) we have a "pure" stationary liquid with a constant pressure p_, so that the velocity potential in it is
equal to —p-t; let X(t) be the boundary separating the pure liquid and the mixture, which is to be determined,
We assume that for X = « we have a constant flow, the pressure in which is equal to zero:

(Dt""'ov (Dx""u()f vV, r—-)'il
c—»¢g for T4 o0
where subscripts indicate corresponding derivatives.

Motion occurs as the result of an initial velocity and a drop in pressure, We assume, further, that
pT(r) = const. We consider the limiting equations for r, = 0, Then from the system (4.1)-(4.5) we easily
obtain a closed system of equations for the functions v, w = v — ¢4, c. To obtain this system we differen-
tiate equation (4.3) (with r, = 0) with respect to X, The final form of the system is found fo be
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v v vtw/e B—1/cw 3u? | (2c)
w]+Blw|=0, B={(14+1/w v+ 3h—1/)w 3w? [ (2c) (6.1)
¢ /i ¢ /x —1+ec 1—3cj2 v—3w/2

We write initial conditions for t = 0, x > X and boundary conditions for t > 0, x = X1

V=0 W =Wo (=0 —U), c=2¢p X =0 (6.2)

For I > 0 the function ¢;'(x, t) is a continuous function of x. According to Theorem 2,2 the potential
® is the limit of ¢i' as 1 — 0, uniformly with respect to Xx. Consequently, the potential ¢ must be continuous
on the separation boundary:

O (X +0,0= —pt

We differentiate this equation with respect to t and substitute the value of &; into equation (4.3) (with
Ty = 0); thus

— X' (v —w) + Ul —wp ;- Yu*=p —p*=p,
(X' = (d ] d)X, p+ = =1, (vg — we)® — Y wy?) (6.3)

Next, we obtain from the identity (2.28) the mass-conservation equation
(1 —3/2)(v--w) 4 Yy = — X’ (6.4)
We assume that bubbles neither are formed nor vanish at the separation boundary; therefore
X' - (6.5)

We consider a self-similar solution, The problem (6.1)-(6.5) for the determination of the unknowns
v, w, ¢, X admits the group of dilatations (4.8); therefore we seek its solution in the form

v=vA),w=w),c=c(M),A=z/t, X =Dt (6.6)

For the functions v, w, and ¢ we obtain a system of ordinary differential equations

v
(B_x)%(w>=0 for A>D 6.7)
c
The initial conditions (6.2) imply that
v —> vy, W Wy, ¢>Co fOor A o0 (6.8)

The boundary conditions (6.3)~(6.5) for A =D assume the form
v=(1—=3/2w, w=H22(p/( +6c =*/,cA):, D=y (6.9)
Since
14 6c — ®ye®> 0for 0 <<c <%
then for existence of a solution it is necessary that
P1 = p_- Yy (v — wo)2‘+ Hawe* >0 (6.10)

The solution of the differential equation (6,7) either has the form

v
(w ) = const (6.11)
c

or we must have
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TR T det (B —A) =(h —of =Yt (9+c¢) (h—2v) —*fuw* =0 (6.12)

i 10¢ | :
/ ' ’ A For
. s

2 7 Y 7 ,
P w0, 0<c<le, =@V s — 1)1 ~0.74
V2R | |
- \ the equation (6.12) has three real distinct roots (eigenvalues of the
= J ' L matrix B)
Fig. 8

hi=v -+ whki{c)(i=1,2,3) (6.13)
where kj{c) are the roots of the equation
B — =Yk =%, =0

{they depend only on ¢), For 0 <c < cx
by <hy = —CLY» <k, <0, 0 <hs

To the eigenvalue }; there corresponds the eigenvector of the matrix B

i -+ %,
rp= k41 )
(— k24 i+ 3)c/ (why) (6,14)

Along with the constant solution (6.11) the system of equations (6,7) has three families of solutions
corresponding to the three eigenvalues A of the matrix B; thus

dv/r! =dwi/r2=de/r?® =154 (v,w,c) (6.15)

The solutions (6,11} and (6.15) are conveniently represented graphically in the phase space of the
dependent variables v, w, and c; to the solution (6.11) there corresponds a point; to the solutions (6.15)
there correspond three families of nonintersecting (i.e., nonintersecting within the family) curves. To the
general solution of the system (6.7) there corresponds a continuous curve, consisting of portions of the
curves (6.15) along which the parameter A is nondecreasing (does not undergo a discontinuity).

We consider the boundary conditions (6.9). The first two of them define a curve K in the phase space
of the dependent variables v, w, c. This curve must be joined to the point (v,, wy, c¢) by a solution of the
system (6,7); in addition, we must have D= X on K. Hence, from the roots (6.13) and the third of the con-
ditions (6.9) we find that when wy > 0 only the third family of the families (6.15) can be adjoined to the curve
K; the curves of the first and second families, on which the values of A are less, cannot be joined to K.
The solution of the problem is unique; however it does not exist for all vy, w,, ¢g, Py. The set of points (v,
Wy, €g) for which the solution exists fills out some set on a surface which depends on p;. Similarly, when
wy < 0, only solutions of the first or second families of (6.15) can be adjoined to the curve K. The solution
is unique; it exists if the point (vy, wy, cg) (for fixed p;) lies inside some region,

The reason for nonexistence of the solution can be due to one of the following: 1) the conditions on
the separation boundary cannot be satisfied; 2) the conditions at infinity (in particular, the condition wl, =
0) cannot be satisfied; 3) the condition ¢ = 1 is violated, In the first case, allowance must be made for the
creation and extinction of bubbles on the separation boundary. In the second case it is necessary to con-
sider the system of equations with ry > 0 (in this case there is also a self-similar solution). In the third
case it is necessary to take cavitation into account,

In Fig. 8 we present graphs of the solution of the problem for the initial conditions v; = w; =—2.89,
Cy = 0.058 and pP- =—1,08 (pl = 1).

The author thanks V. K. Kedrinskii, L. V, Ovsyannikov, S, S, Kutateladze, and B. S. Kogarko for their
discussions and for their interest in my paper.
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